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Motivation

Implanted devices benefits:
I Chronic diseases treatment
I Health monitoring
I Brain-machine interfaces

Main goal: Noninvasive implants

Challenges:
I Miniaturization
I Autonomy

Batteries limit both!

One solution:
Inductive Link Powering
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Inductive Link

Skin

PCB
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Muscle
Implanted
 Device

Magnetic
Coupling

I Maximum power is restricted
due to tissue heating

I Link efficiency must be
optimized
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I How to design inductive links for optimal power transferring

efficiency?

I Low frequencies are commonly used (<20MHz)

I Low frequencies require big inductors, that are not desired.

I Recently arose the possibility of powering the implants in GHz
frequencies, according to the electrical properties of tissues [1].

I We propose a method for optimal design of the inductive links
considering all the associated constraints.

[1] A. Poon, S. O’Driscoll, and T. Meng, ”Optimal Frequency for Wireless Power

Transmission into Dispersive Tissue”, May 2010.
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Electrical Model
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Electrical Model

1
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M = k
√

L1L2 Q1 = ωL1/R1 Q2 = ωL2/R2 p = R2/RL

Function to be optimized

1
η
=

1
k2 .

1
Q1

.
1
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. (p + 2 +

1
p
) + p + 1︸ ︷︷ ︸

I Coupling factor squared
I First Inductor quality factor
I Second Inductor quality factor
I Load matching dependence
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Problem Formulation

wind1(2)
davg1(2)

FR4

Given: The implanted inductor size davg1, wind1
The distance between the inductors d

Find: The external inductor size davg1, wind1
The load proportion p
The frequency f

In order to: maximize efficiency η
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Optimization Problem

wind1(2)
davg1(2)

FR4

Written as a Geometric Program:

minimize :
1
k2 .

1
Q1
.

1
Q2
.(p + 2 +

1
p
) + p + 1

}
Reciprocal of the

efficiency

subject to : (A) Fmin.wind1 ≤ davg1

(B) wmin ≤ wind1

(C) davg1 + wind1 ≤ dmax


Define the

design space
boundary
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Optimization Problem

wind1(2)
davg1(2)

FR4

Given data for this example:

I davg2 = 4 mm
I wind2 = 0.5 mm
I d was swept between 1 mm and 35 mm
I Material surrounding the link: air
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Models

I 1/Q1 = f1(davg1,wind1, f )
I 1/Q2 = f2(f )

I 1/k2 = f3(davg1)
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Geometric Program Results
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Implementation and Test for d=15mm
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Measurements
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Conclusions

I We presented a method for optimal design of inductive links,
considering both the frequency and the geometry of the link.

I As an example, when the implanted inductor has a diameter of 4
mm and the distance between the inductors is 15 mm, the
diameter of the designed external inductor is 22 mm and the
maximum efficiency measured is 30% at 415 MHz.

I For the dimensions used as example, the optimal frequency is
between 120 MHz and 1.5GHz. Which is higher than the
frequency commonly used, but lower than the estimated
frequency when only the tissues are considered.
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Questions?

2014 IEEE Topical Conference on Biomedical Wireless
Technologies, Networks & Sensing Systems, Newport Beach, CA

Slide 20


	Electrical Model
	Formulation of the Problem
	Results
	Conclusions

