

Optimal Design of Energy Efficient Inductive Links for Powering Implanted Devices

Fabian L. Cabrera, and F. Rangel de Sousa

Radio Frequency Laboratory - EEL/CTC Federal University of Santa Catarina, Florianópolis, Brazil

January, 2014

Motivation

Implanted devices benefits:

- \blacktriangleright Chronic diseases treatment
- \blacktriangleright Health monitoring
- \blacktriangleright Brain-machine interfaces

Main goal: Noninvasive implants

Motivation

Implanted devices benefits:

- \blacktriangleright Chronic diseases treatment
- \blacktriangleright Health monitoring
- \blacktriangleright Brain-machine interfaces

Main goal: Noninvasive implants

Challenges:

- \blacktriangleright Miniaturization
- \blacktriangleright Autonomy

Batteries limit both!

Motivation

Implanted devices benefits:

- \blacktriangleright Chronic diseases treatment
- \blacktriangleright Health monitoring
- \blacktriangleright Brain-machine interfaces

Main goal: Noninvasive implants

Challenges:

- \blacktriangleright Miniaturization
- \blacktriangleright Autonomy

Batteries limit both!

One solution: Inductive Link Powering

2014 IEEE Topical Conference on Biomedical Wireless Technologies, Networks & Sensing Systems, Newport Beach, CA

Inductive Link

\blacktriangleright How to design inductive links for optimal power transferring efficiency?

- \blacktriangleright How to design inductive links for optimal power transferring efficiency?
- \blacktriangleright Low frequencies are commonly used (\lt 20MHz)
- \triangleright Low frequencies require big inductors, that are not desired.
- Recently arose the possibility of powering the implants in GHz frequencies, according to the electrical properties of tissues [1].

[1] A. Poon, S. O'Driscoll, and T. Meng, "Optimal Frequency for Wireless Power Transmission into Dispersive Tissue", May 2010.

- \blacktriangleright How to design inductive links for optimal power transferring efficiency?
- \blacktriangleright Low frequencies are commonly used (\lt 20MHz)
- \triangleright Low frequencies require big inductors, that are not desired.
- Recently arose the possibility of powering the implants in GHz frequencies, according to the electrical properties of tissues [1].
- \triangleright We propose a method for optimal design of the inductive links considering all the associated constraints.

[1] A. Poon, S. O'Driscoll, and T. Meng, "Optimal Frequency for Wireless Power Transmission into Dispersive Tissue", May 2010.

◈IEEE

2014 IEEE Topical Conference on Biomedical Wireless Technologies, Networks & Sensing Systems, Newport Beach, CA

- [Formulation of the Problem](#page-16-0)
- **•** [Results](#page-22-0)
- [Conclusions](#page-28-0)

- [Formulation of the Problem](#page-16-0)
- **•** [Results](#page-22-0)
- [Conclusions](#page-28-0)

$$
\eta = \frac{Power \text{ at the load}}{Power \text{ delivered to the link}} = \frac{|I_2|^2 R_L}{|I_1|^2 \Re\{Z_{in}\}}
$$

when $X_L = -\omega L_2$:

$$
\frac{1}{\eta} = \frac{R_1 R_2}{(\omega M)^2} \left(\frac{R_2}{R_L} + 2 + \frac{R_L}{R_2} \right) + \frac{R_2}{R_L} + 1
$$

$$
\frac{1}{\eta} = \frac{R_1 R_2}{(\omega M)^2} \left(\frac{R_2}{R_L} + 2 + \frac{R_L}{R_2} \right) + \frac{R_2}{R_L} + 1
$$

$$
M = k\sqrt{L_1 L_2} \qquad Q_1 = \omega L_1 / R_1 \qquad Q_2 = \omega L_2 / R_2 \qquad p = R_2 / R_L
$$

Function to be optimized
\n
$$
\frac{1}{\eta} = \frac{1}{k^2} \left[\frac{1}{Q_1} \cdot \frac{1}{Q_2} \cdot \frac{p+2+\frac{1}{p}+p+1}{\frac{p}{2}} \right]
$$

$$
\frac{1}{\eta} = \frac{R_1 R_2}{(\omega M)^2} \left(\frac{R_2}{R_L} + 2 + \frac{R_L}{R_2} \right) + \frac{R_2}{R_L} + 1
$$

$$
M = k\sqrt{L_1 L_2} \qquad Q_1 = \omega L_1 / R_1 \qquad Q_2 = \omega L_2 / R_2 \qquad p = R_2 / R_L
$$

 \triangleright Coupling factor squared

$$
\frac{1}{\eta} = \frac{R_1 R_2}{(\omega M)^2} \left(\frac{R_2}{R_L} + 2 + \frac{R_L}{R_2} \right) + \frac{R_2}{R_L} + 1
$$

$$
M = k\sqrt{L_1 L_2} \qquad Q_1 = \omega L_1 / R_1 \qquad Q_2 = \omega L_2 / R_2 \qquad p = R_2 / R_L
$$

$$
\frac{1}{\eta} = \frac{R_1 R_2}{(\omega M)^2} \left(\frac{R_2}{R_L} + 2 + \frac{R_L}{R_2} \right) + \frac{R_2}{R_L} + 1
$$

$$
M = k\sqrt{L_1 L_2} \qquad Q_1 = \omega L_1 / R_1 \qquad Q_2 = \omega L_2 / R_2 \qquad p = R_2 / R_L
$$

$$
\frac{1}{\eta} = \frac{R_1 R_2}{(\omega M)^2} \left(\frac{R_2}{R_L} + 2 + \frac{R_L}{R_2} \right) + \frac{R_2}{R_L} + 1
$$

$$
M = k\sqrt{L_1 L_2} \qquad Q_1 = \omega L_1 / R_1 \qquad Q_2 = \omega L_2 / R_2 \qquad p = R_2 / R_L
$$

[Formulation of the Problem](#page-16-0)

• [Results](#page-22-0)

• [Conclusions](#page-28-0)

Problem Formulation

Optimization Problem

Written as a Geometric Program:

$$
\begin{cases}\n\text{minimize:} & \frac{1}{k^2} \cdot \frac{1}{Q_1} \cdot \frac{1}{Q_2} \cdot (p+2+\frac{1}{p}) + p+1 \\
\text{subject to:} & \text{(A) } F_{\text{min}} \cdot w_{\text{ind1}} \le d_{\text{avg1}} \\
&\text{(B) } w_{\text{min}} \le w_{\text{ind1}} \\
&\text{(C) } d_{\text{avg1}} + w_{\text{ind1}} \le d_{\text{max}}\n\end{cases}\n\quad\n\text{Define the} \text{begin space} \text{because } \text{log}(\text{log} \times \text{log} \times \text{log
$$

Optimization Problem

Given data for this example:

- \blacktriangleright *d*_{avg2} = 4 *mm*
- \blacktriangleright *W*_{ind} γ = 0.5 *mm*
- ^I *d* was swept between 1 *mm* and 35 *mm*
- \triangleright Material surrounding the link: air

2014 IEEE Topical Conference on Biomedical Wireless **IEEE** Technologies, Networks & Sensing Systems, Newport Beach, CA

Models

$$
\begin{aligned} &\blacktriangleright 1/Q_1 = f_1(d_{avg1}, w_{ind1}, f) \\ &\blacktriangleright 1/Q_2 = f_2(f) \end{aligned}
$$

Models

$$
\begin{aligned} \triangleright \quad & 1/Q_1 = f_1(d_{avg1}, w_{ind1}, f) \\ \triangleright \quad & 1/Q_2 = f_2(f) \\ \triangleright \quad & 1/k^2 = f_3(d_{avg1}) \end{aligned}
$$

- [Formulation of the Problem](#page-16-0)
- **•** [Results](#page-22-0)
- [Conclusions](#page-28-0)

Geometric Program Results

Geometric Program Results

Geometric Program Results

Implementation and Test for d=15mm

Measurements

- [Formulation of the Problem](#page-16-0)
- **•** [Results](#page-22-0)
- [Conclusions](#page-28-0)

- \triangleright We presented a method for optimal design of inductive links, considering both the frequency and the geometry of the link.
- \triangleright As an example, when the implanted inductor has a diameter of 4 mm and the distance between the inductors is 15 mm, the diameter of the designed external inductor is 22 mm and the maximum efficiency measured is 30% at 415 MHz.
- \triangleright For the dimensions used as example, the optimal frequency is between 120 MHz and 1.5GHz. Which is higher than the frequency commonly used, but lower than the estimated frequency when only the tissues are considered.

2014 IEEE Topical Conference on Biomedical Wireless Technologies, Networks & Sensing Systems, Newport Beach, CA

